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Abstract — The focus of this work is to build a model that 
classifies recipe images into food and non-food categories. Neural 
networks, namely convolutional neural networks, further enhanced 
by transfer learning have been shown to be very effective at these 
types of image classification tasks, hence different neural network 
architectures were explored in order to extract and classify features 
in food and non-food images. The best performing model achieves 
93% accuracy which is on par with similar experiments. 

I. INTRODUCTION 
Wellio is a recipe planning platform dedicated to making 

eating well easier and more convenient — this means 
personalizing meals by different metrics such as nutrition, 
variety, and cost, with the end goal of improving the user’s diet 
and overall health.  

Wellio’s recommendation system allows users to search, 
save, and purchase ingredients for recipes they wish to cook. 
As such, users need to be shown enough at-a-glance insight 
into recipes, enabling them to make a recipe selection with 
confidence and ease. Often a photo of the recipe is the best way 
to achieve this. The image, therefore, must be descriptive of the 
recipe — generally a photo of the final product. In addition to 
users being more inclined to select recipes with accompanying 
images that are relevant to their search query, users tend to 
choose recipes that are also more visually appealing.  

In Wellio’s recipe database, there exist many instances in 
which the recipe image is not relevant to the recipe or is 
visually unappealing. To be clear, relevancy and appealingness 
are open-ended concepts. In the context of Wellio’s problem, 
non-relevant images are generally represented by placeholder 
images (from recipes that don’t have an accompanying photo 
of the actual final product), images of plates, eating utensils 
and cooking tools, illustrations, and images in which people are 

the focus. We can broadly categorize these as non-food images. 
Unappealing food images are more subjective, but in general 
are represented by food images with large graphic or text 
overlays, food images with poor focus, bad lighting, and 
sloppy plating of food items. 

The main goal of the work presented is to build a classifier 
that can filter out non-food and, to some extent, unappealing 
food images from Wellio’s search results. The hypothesis 
driving this goal is the assumption that both relevance and 
appealingness of a recipe image are factors in the user’s 
assessment of whether the recipe itself is appealing. This, by 
extension, greatly influences whether the user selects a recipe 
to cook.  Central to this is the idea of user experience — 
surfacing highly relevant and appealing recipe images in 
Wellio’s search channels will lead to higher customer 
satisfaction among Wellio users. 

II. EXPLORATORY DATA ANALYSIS (EDA) 
Wellio currently has over 15 million recipe images in its 

database. This represents a potentially huge training dataset, 
but unfortunately these images are entirely unlabeled regarding 
relevance and appeal. However, each recipe image is 
associated with a list of ingredients, preparation steps, and 
source. Recipes come from a variety of sources such as blogs 
and online publications. Anecdotally, certain sources are 
associated with higher incidences of non-food or unappealing 
food recipe images and often particular sources are associated 
with both.  

The aim of EDA was to ascertain if Wellio recipe source 
could be a good proxy for recipe image relevance and appeal. 
The ultimate goal is to use this proxy relationship to 
automatically label recipe images on relevance and appeal 
based on which recipe source they come from. The data 
examined came from CrowdFlower (a data mining and 
crowdsourcing platform) in which participants were asked to 
score the relevance of search results given a particular query 
and were asked the question “Does this recipe look appealing?” 
given a recipe title and image. 

In short, the EDA was inconclusive as to whether recipe 
source is a good proxy for image relevance and appeal. More 
data is needed — many of the sources from the CrowdFlower 
data only have one recipe associated with them which is not 
enough to make any inferences. Another factor is the role of 
personal preference and taste when evaluating the appeal of 
recipe images. Someone might rate a recipe image as 
unappealing even though it may have elements of a more 
objectively high-quality image simply because the person 

Figure 1. Examples of Wellio recipe images

Non-food images

Unappealing food images



evaluating the image doesn't like a certain ingredient used in 
the recipe. A related (but unvalidated) observation is it seems 
as though "unhealthy" recipe images, for example, images of 
burgers, pizza, etc., are more often rated as appealing as 
opposed to images of vegetables and salads. There is also the 
issue of foods that inherently don't photograph as well as others 
(for example, soup). 

Without quantitative proof, it’s intuitively obvious that 
relevance and appealingess are related to some extent. For 
example, images of food that are very visually unappealing are 
often not even immediately recognizable as food. As such the 
goal of the project was simplified to detecting whether an 
image contains food or not, a binary image classification task. 

III. DEEP LEARNING FOR IMAGE CLASSIFICATION 
Before the widespread adoption of deep learning, image 

classification was performed via hand-crafted extraction of 
features in images (such as edges and corners). Algorithms like 
Scale-Invariant Feature Transform (SIFT) [1], which is aptly 
named, were used to extract features. These features were then 
passed to a linear classifier, such as a Support Vector Machine 
(SVM) to ultimately classify the image. 

Modern day image classification generally involves the use 
of a convolutional neural network (CNN). The basic premise 
behind a CNN is that it takes an image and then through a 
series of several layers and operations recognizes increasingly 
complex features in the training data. The CNN then outputs 
(in the case of binary classification) a single value between 
zero and one. This value represents the probability associated 
with the input being of a particular class. The novelty of a 
CNN over hand-crafted feature extraction techniques is that 
features extracted by a CNN are learned using the data rather 
than manually constructed [1].     

A. Convolutional Neural Networks 
CNNs are made up of four main components: convolution, 

non-linearity, pooling (subsampling or downsampling), and a 
final fully connected layer (for classification). Backpropagation 
is the crucial step that powers learning during the training 
process. 

In the convolutional layers, image features are extracted by 
sliding filters (also known as feature detectors), often a 3 x 3 or 
5 x 5 dimensional matrix, over the image (which is also a 
matrix of pixel values). The dot product is then computed 
between the filter and image to generate feature maps. The 
filter size, as well as the number of filters to use, are hyper-
parameters under the user’s control. The image features are 
learned hierarchically — lower convolutional layers learn 
lower-level features such as corners and edges, middle layers 
learn color and shape, and higher layers learn high-level 
features representing the objects in the image (for example, in 
the case of an image of a cat, higher layers learn what features 
make up a cat ear) [2]. 

After each convolutional layer, a non-linearity is 
introduced, an activation function which encodes when the 
individual “neurons” (or nodes) in the network should “fire” 
(or activate) given certain features. Generally, a Rectified 
Linear Unit (ReLU) activation works well in CNNs [3]. ReLU 
activation replaces all negative values in the feature map with 

zeros.  Since convolution is still a linear operation but image 
data is non-linear, a non-linear activation function helps the 
network to learn non-linear data [3]. 

Next is pooling, which similar to convolution, involves the 
use of a two-dimensional matrix as a filter. These pooling 
filters reduce each feature map’s dimensionality, while still 
retaining the most important information. There are several 
types of pooling, such as max, average, and sum. Max pooling, 
in which the rectified feature map is reduced to the max values 
ascertained from passing a m x n filter over the map, has been 
shown to work quite well [4]. Pooling helps make feature 
learning more manageable by reducing the number of 
parameters (and reduces the number of computations) which 
helps in over-fitting. Another benefit of pooling is it helps 
make the network invariant to transformations and translations. 
For image classification this is very beneficial since the same 
type of object can appear at different scales and orientations.  

The final layer in a CNN is a fully connected layer. High-
level features are extracted from the previous convolutional 
and pooling layers and the function of the fully connected layer 
is to use these feature maps to classify the images into various 
classes. The term “fully connected” means every node in the 
previous layer is connected to every node in the next layer [4]. 
This is good for classification as each high-level feature gets a 
vote in the class prediction. Again, a non-linear activation is 
applied to the final output. In the case of binary classification, 
this activation is a sigmoid function [4], which squashes values 
between zero and one. These then represent the probabilities of 
belonging to a given class. A threshold is selected and 
probabilities below the given threshold are assigned to the 
negative class, probabilities above the given threshold are 
assigned to the positive class. 

During the forward pass of the network, the CNN takes an 
image as input, goes through convolution, ReLU, pooling, and 
then the final fully connected layer. Because the network is 

Figure 2. The architecture of LeNet-5 demonstrates the different layers and 
operations in a CNN [5]

Figure 3. Different activation functions — left: ReLU, right: Sigmoid [3]



initialized with random values, the final outputted probability 
for each class is also random. To make improvements to this 
prediction, the error is calculated using a loss function (such as 
mean square error). Backpropagation then calculates the 
gradient (that is the derivatives) of the loss function with 
respect to all the network’s parameters (or filter values, also 
known as weights) [6]. The weights are then updated via 
gradient descent to minimize the error. An important hyper-
parameter is the learning rate, which specifies the step size to 
take when performing gradient descent [6]. This whole process 
is then performed across all images in the training set. 

  (1) 

B. Transfer Learning 
Instead of training a CNN from scratch (which is difficult 

for multiple reasons — it requires a very large dataset, compute 
power, and time), it is much more common and efficient to use 
a pre-trained CNN. A pre-trained CNN is generally a deep 
network, comprised of many convolutional and pooling layers, 
previously trained on a very large and varied set of images. 
Such a large, varied dataset allows the pre-trained model to 
make very good generalizations on universal features occurring 
in images that can be repurposed for a variety of computer 
vision tasks. There are two ways to approach transfer learning 
— feature extraction and fine-tuning [7]. 

C. Feature Extraction 
Feature extraction uses patterns learned by a previously 

trained network to extract representative features from new 
data. These features are then used to train a new classifier from 
scratch. As discussed previously, the convolutional base (the 
convolutional layers) in a CNN is essentially a feature 
extractor. The base of a pre-trained model can therefore be 
used to extract features from a new set of images, generating a 
set of feature maps which, in conjunction with their associated 
labels, are passed to a classifier to generate class predictions.  

Generally, this approach is good for problems in which the 
dataset is small and similar to the data the original pre-trained 
network was trained on [7]. However, it can also be leveraged 
for problems in which the data is small but dissimilar from the 
original data. In this case, only the first few layers of the 
convolutional base are used to generate feature maps, as these 
lower layers detect very generic features universal to all images 
[7]. While this approach of a convolutional base + classifier is 
computationally fast to run (and can be performed on CPU), it 
does not leverage data augmentation. Data augmentation is a 
technique to artificially create additional training examples by 
randomly transforming images (i.e. rotation, flips, etc.) and has 
shown to be quite effective in reducing overfitting [8]. The 
reason it can’t be applied in this approach is because the pre-
trained convolutional base isn’t learning new features from the 
data, only generating feature maps based on what’s already 
learned from the previous data it was trained on.  

D. Fine-tuning 
Fine-tuning is another approach to transfer learning. It 

involves extending the convolutional base by adding additional 
fully connected layers on top and training the whole network 

end-to-end [7]. As such, it can make use of data augmentation. 
However, this approach is much slower and computationally 
expensive (and requires GPU). The term “fine-tuning” comes 
from the unfreezing (which allows the weights to get updated 
during training) of a few of the top layers in the convolutional 
base. These convolutional layers are then trained along with the 
newly added fully connected layers. There are two benefits to 
this approach — it can leverage data augmentation and it can 
learn more nuanced features relevant to the problem at hand 
[7]. 

Fine-tuning works well on a dataset that is large and similar 
to the original dataset — overfitting is less of an issue with 
more data. Fine-tuning can also be leveraged when the dataset 
is large but very different from the original dataset. It’s often 
the case that it’s still advantageous to use a pre-trained network 
with its initialized weights instead of starting from scratch [7]. 

IV. RELATED WORK 
While CNNs have been around since the early 1990s, they 

were still “in beta” so to speak. With the advent of more 
computing power and data, CNNs were able to solve much 
more challenging problems [1]. The past five years have seen a 
boom in their usage in computer vision problems. Some 
influential projects and architectures built upon in this paper 
are discussed below. 

A. ImageNet 
ImageNet is a project that contains over 1.4 million labeled 

images organized into ~22,000 categories [9]. These categories 
encompass a multitude of objects such as different animals, 
vehicles, household items, and even various kinds of foods. 
The state-of-the-art pre-trained networks are trained on 
ImageNet in response to the ImageNet Large Scale Visual 
Recognition Challenge. The aim of this challenge is to 
correctly classify an image into 1,000 separate classes and is 
used as a benchmark for image classification problems. 

B. VGG 
Developed at the University of Oxford’s Visual Geometry 

Group, the VGG architecture took 2nd place at the ImageNet 
Challenge in 2014 in the classification task. Both VGG16 and 
VGG19 refer to the number of weight layers in the network 

Etotal = ∑
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Figure 4. The architecture of VGG16 [11]



and demonstrate that the number of layers in a network is 
crucial for performance. While relatively straightforward in 
terms of architecture, VGG is slow and quite large [10]. 

C. GoogLeNet  
The GoogLeNet (since renamed Inception) architecture was 

the ImageNet Challenge winner in 2014 and comes out of 
research at Google. Its novelty is the Inception module, which 
operates as a mini model instead a bigger model (very much 
like the 2010 movie by the same name). These modules act like 
multi-level feature extractors which perform convolutions in 
parallel. This results in a faster and smaller model architecture 
than VGG. 

D. Food Image Detection and Recognition  

Food image detection is binary classification, that is, 
classifying a given image into food or non-food classes. Food 
image recognition, on the other hand, is a multi-class 
classification problem that seeks to recognize different food 
item classes. These are both similar to other computer vision 
tasks, and research into this area follows the current trend of 
using CNNs, leveraging pre-trained models, and performing 
fine-tuning to solve these types of tasks with rather successful 
results [13], [14]. 

V. METHODOLOGY 
The general approach in building a recipe image food 

classification system was to first create a labeled dataset of 
food images for the positive training examples and non-food 
images for the negative training examples. While Wellio has a 
large amount of recipe image data, it is unlabeled. Therefore, 
ImageNet image data was used. Next two pre-trained models, 
VGG16 and Inception V3 were explored to create feature 
maps. These feature maps were then passed through various 
model architectures to evaluate the classifier’s performance 
using a variety of evaluation metrics. 

A. Data & Preprocessing 
The image data comes from sampling ImageNet images (as 

well as providing some additional training data in the form of 
food images from recipe sites and blogs). ImageNet images are 
organized into various different synsets (synonym sets), 
according to the WordNet (a lexical database) hierarchy.  The 
food image dataset was created by randomly sampling from ten 
manually selected food related synsets. The non-food image 
dataset was also created by randomly sampling from all synsets 
(excluding the manually selected food related synsets 

mentioned previously, plus some additional food related 
synsets).  

This resulted in: 

2,400 training samples 
• 1,200 food images 
• 1,200 non-food images 

800 validation samples 
• 400 food images 
• 400 non-food images 

A limitation of both the training and validation data is that 
the resulting data is noisy. The non-food image data contains 
some food images. This is because randomly sampling all 
synsets minus only some food related synsets, does not actually 
remove all food related synsets. Similarly, the food image data 
contains some images that are not quite of food per se. For 
example, an image of a group of people sitting around a table 
eating dinner or an image of a bag of Doritos. The food image 
data also contains several low-quality food images, which 
include food images with text overlay. 

The hold out data is very small and consists of two 
manually labeled datasets — one for non-food images and 
another for visually unappealing food images from Wellio 
recipe image data. The desire being that the model recognizes 
neither hold out set as food images. 

Some image preprocessing is necessary — namely 
normalizing pixel intensity values by 255 (this keeps the 
network’s weights from oscillating wildly during training) and 
resizing all images to be the same height and width (which 
allows convolution and pooling to be performed in a 
reasonable manner). For this dataset, all images were resized to 
be 150 x 150 pixels. 

B. Technical Details 
All experiments were run on Google Cloud Platform’s 

Compute Engine using only CPU. The Keras API was chosen 
as the deep learning framework for its python compatibility 
and ease of use for fast experimentation. Keras also contains 
several state-of-the-art pre-trained networks such as VGG16 
and Inception V3 which were used for feature extraction. The 
scikit-learn library was implemented to establish a baseline 
model as well for its model evaluation metrics. And last but not 
least, pandas, matplotlib, and seaborn were used for data 
visualizations.  

C. Feature Extraction 
As mentioned previously, the general strategy for 

leveraging transfer learning on small datasets that share 
similarity to the original data the pre-trained network was 
trained on, is to first generate feature maps using the pre-
trained convolutional base and separately run these feature 
maps through a final classifier for predictions. Since the data 
used in this project is both small and similar (or rather the exact 
same) data used to train the selected pre-trained models 
(VGG16 and Inception V3) this is the method that was 
employed. To reiterate, the training and validation data both 
come from ImageNet so a caveat here is that the feature maps 
generated from VGG16 and Inception V3 may be more 
resolved as these networks have learned the features in these 

Figure 5. The architecture  of Inception V3 [12]



images over many training epochs. Whether or not this leads to 
some over-fitting is unclear. However, since this approach 
removes the last fully connected layers in the pre-trained 
networks used, nodes that detected features that are more high-
level and nuanced to the given classification task at hand — in 
the case of VGG16 and Inception V3 classifying 1,000 classes, 
are not present and therefore overfitting may not be 
problematic after all.  

The original VGG16 network was trained on 224 x 224 
pixel input images and Inception V3 was trained on 299 x 299 
pixel input images. Because the images in this project’s dataset 
were resized to 150 x 150 pixels (to speed up feature map 
generation), a new input dimension of 150 x 150 x 3 was 
specified for both pre-trained models. For each image in the 
dataset this resulted in the generation of 512 4 x 4 pixel and 
2,048 3 x 3 pixel feature maps for VGG16 and Inception V3 
respectively. 

D. Baseline Models  
A non-neural linear model was used as a “baseline” model 

to ascertain the best final classifier to use in conjunction with 
the feature maps. Scikit-learn’s stochastic gradient descent 
(SGD) classifier was selected with hinge loss, returning an 
SVM classifier which has been successfully used in past 
computer vision problems. 

E. Neural Network Architectures 
In addition to the aforementioned more traditional machine 

learning SGD classifier, several relatively simple multi-layer 
perceptron (MLP) architectures were explored using the feature 
maps generated by both VGG16 and Inception V3. Specific 
hyper-parameters such as the number of hidden layers, hidden 
units, as well as regularization (dropout) were manually tuned, 
and the network was trained for 30 epochs. 

VI. EXPERIMENTAL RESULTS 

A. Model Comparison 
Passing the feature maps and associated labels generated 

via VGG16’s convolutional base through an SGD classifier 
with log loss resulted in 77.4% accuracy on the validation set. 
Using an SGD classifier with hinge loss resulted in 84.4% 

accuracy on the validation set. The same strategy was 
employed with feature maps generated via Inception V3’s 
convolutional base. An SGD classifier with log loss resulted in 
91.4% accuracy and using hinge loss resulted in 90.1% 
accuracy on the validation set. These were already quite 
favorable results. 

 

 
Table 1 & 2. Hyper-parameter Exploration and Results 

The results for the different MLP architectures are also 
quite favorable. The VGG16 feature maps + MLP variants 
achieved an average of 87% accuracy on the validation set. The 
Inception V3 feature maps + MLP variants achieved an 
average of 92% accuracy on the validation set. See Tables 1 
and 2 for enumerated results for each pre-trained model feature 
map and MLP variant.  

Learning curves also serve as a nice way to compare model 
performance. Note, the learning curves show that validation 
accuracy is sometimes higher than training accuracy almost 
immediately. This is because Keras has two modes: training 
and validation. Regularization techniques, such as dropout are 
not applied to the validation set. Also, the training accuracy is 
an average of the accuracies over each batch of training data. 
Since the networks change over time, the accuracy for the first 
batches of an epoch is generally lower than over the last 
batches. The validation accuracy for an epoch is calculated 
using the network as it is at the end of the epoch, resulting in a 
higher accuracy for that epoch. 

B. Evaluation Metrics 
To assess additional evaluation metrics, the model with the 

best balance of validation accuracy and complexity was 
selected for further analyses. For experiments using VGG16 
feature maps, the model architecture of two layers with 64 
hidden units and 25% dropout yields the model with the best 

VGG16 feature maps + MLP classifier

Layers Hidden Units Dropout
Validation 
Accuracy Delta

1 Dense 0 0 85.3% 0.13%

1 Dense + 1 Hidden 64 0 87.9% 0.86%

1 Dense + 1 Hidden 256 0.5 88.7% 0.75%

1 Dense + 2 Hidden 64, 64 0.25, 0.25 87.9% 0.54%

1 Dense + 2 Hidden 256, 64 0.25, 0.25 87.4% 0.97%

Inception V3 feature maps + MLP classifier

Layers Hidden Units Dropout
Validation 
Accuracy Delta

1 Dense 0 0 91.7% 0.63%

1 Dense + 1 Hidden 64 0 92.5% 0.75%

1 Dense + 1 Hidden 256 0.5 92.9% 0.71%

1 Dense + 2 Hidden 64, 64 0.25, 0.25 92.5% 0.75%

1 Dense + 2 Hidden 256, 64 0.25, 0.25 92.2% 0.77%

Figure 6. Original recipe image (left), 25 randomly selected feature maps 
generated by VGG16’s convolutional base (right)



balance of validation accuracy (88%) and complexity. For 
experiments using Inception V3 feature maps, the model 
architecture of one layer with 256 hidden units and 50% 
dropout yields the model with the best balance of validation 
accuracy (93%) and complexity.  

Although there is no class imbalance, additional evaluation 
metrics such as precision, recall, and f1-score are still of 
interest. In this particular case, it may be beneficial to prioritize 
precision over recall as it would likely yield the better user 
experience to be very sure a recipe image is of food. Also, the 
consequence of a false negative is rather trivial as it means the 
recipe with a falsely labeled non-food image is simply demoted 
in the search results. Prioritizing precision over recall also has 
the added benefit of potentially weeding out unappealing food 
images as well. Often unappealing food images aren’t even 
immediately recognizable as food. 

 Another valuable evaluation metric is a Receiver Operating 
Characteristic (ROC) curve where the true positive rate is 
plotted as a function of the false positive rate. An Area Under 
the Curve (AUC) of up and to the left is good — as the 
threshold decreases not many more false positives are being 
accrued while the true positives increase (Figure 11). This 
demonstrates the model is good a separating the food and non-
food images. 

C. Qualitative Analysis 
In addition to quantitative metrics, it is also useful to 

analyze the results qualitatively by visually examining a 
random sample of the images the models classified as food or 

non-food images. See Figures 9–14 for examples of images the 
models correctly labeled, incorrectly labeled, and images the 
model was confused about. 

VII. CONCLUSIONS & FUTURE WORK 
All in all, the models performed decently well but not 

without shortcomings — namely overfitting and noisy 
data. Overfitting is quite high for some of the model 
explorations which could be reduced if data augmentation was 

Figure 8. Learning curves — VGG16 feature maps (top), Inception V3 
(bottom)  

Figure 7. Classification reports — VGG16 feature maps (right), 
Inception V3 feature maps (left)

Figure 9. Non-food images the model correctly and very assuredly 
classifies as not food (with a raw probability of 0)

 Classification using VGG16 feature maps

 Classification using Inception V3 feature maps

Figure 10. Food images the model correctly and very assuredly classifies as 
food (with a raw probability of 1)

 Classification using VGG16 feature maps

 Classification using Inception V3 feature maps



employed. Leveraging data augmentation necessitates 
extending the convolutional base and connecting it to a final 
classifier and running the whole architecture end to end which 
is very compute intensive and requires GPU. However, an 
additional benefit of an end to end implementation is it allows 
fine-tuning — training the top convolutional layers of the 
models which would allow the models to learn more high-level 
features specific to the dataset. Data augmentation, fine-tuning, 
recollecting data to be less noisy, as well as adjusting the 
learning rate, are techniques to explore in the future to enhance 
the performance of these models. 

Figure 12. Food images model incorrectly but still very assuredly classifies 
as not food (with a raw probability near or at 0). Note several of the images 
have people as the main focus.

 Classification using VGG16 feature maps

 Classification using Inception V3 feature maps

 Classification using VGG16 feature maps

 Classification using Inception V3 feature maps

Figure 14. Images the model is unsure about (as the raw probabilities are 
near or at the 0.5 class boundary threshold).

 Classification using VGG16 feature maps

 Classification using Inception V3 feature maps

Figure 13. Non-food images the model incorrectly but still very assuredly 
classifies as food (with a raw probability near or at 1). Note these images 
are indeed labeled as not food, when they are in fact clearly food images. 
This was a shortcoming of the data collection process, as some food 
images were unavoidably randomly sampled from ImageNet to build the 
not food training set. On the bright side, the model does actually correctly 
label them as food images, although not “officially".

Figure 11. ROC curves
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