
Recipe image classification using transfer learning
Leveraging VGG16 and Inception V3 to predict the presence of food items in images

Vanessa Grass
M.S. Data Science

University of New Haven
West Haven, CT

Abstract — The focus of this work is to build a model that
classifies recipe images into food and non-food categories. Neural
networks, namely convolutional neural networks, further enhanced
by transfer learning have been shown to be very effective at these
types of image classification tasks, hence different neural network
architectures were explored in order to extract and classify features
in food and non-food images. The best performing model achieves
93% accuracy which is on par with similar experiments.

I. INTRODUCTION
Wellio is a recipe planning platform dedicated to making

eating well easier and more convenient — this means
personalizing meals by different metrics such as nutrition,
variety, and cost, with the end goal of improving the user’s diet
and overall health.

Wellio’s recommendation system allows users to search,
save, and purchase ingredients for recipes they wish to cook.
As such, users need to be shown enough at-a-glance insight
into recipes, enabling them to make a recipe selection with
confidence and ease. Often a photo of the recipe is the best way
to achieve this. The image, therefore, must be descriptive of the
recipe — generally a photo of the final product. In addition to
users being more inclined to select recipes with accompanying
images that are relevant to their search query, users tend to
choose recipes that are also more visually appealing.

In Wellio’s recipe database, there exist many instances in
which the recipe image is not relevant to the recipe or is
visually unappealing. To be clear, relevancy and appealingness
are open-ended concepts. In the context of Wellio’s problem,
non-relevant images are generally represented by placeholder
images (from recipes that don’t have an accompanying photo
of the actual final product), images of plates, eating utensils
and cooking tools, illustrations, and images in which people are

the focus. We can broadly categorize these as non-food images.
Unappealing food images are more subjective, but in general
are represented by food images with large graphic or text
overlays, food images with poor focus, bad lighting, and
sloppy plating of food items.

The main goal of the work presented is to build a classifier
that can filter out non-food and, to some extent, unappealing
food images from Wellio’s search results. The hypothesis
driving this goal is the assumption that both relevance and
appealingness of a recipe image are factors in the user’s
assessment of whether the recipe itself is appealing. This, by
extension, greatly influences whether the user selects a recipe
to cook. Central to this is the idea of user experience —
surfacing highly relevant and appealing recipe images in
Wellio’s search channels will lead to higher customer
satisfaction among Wellio users.

II. EXPLORATORY DATA ANALYSIS (EDA)
Wellio currently has over 15 million recipe images in its

database. This represents a potentially huge training dataset,
but unfortunately these images are entirely unlabeled regarding
relevance and appeal. However, each recipe image is
associated with a list of ingredients, preparation steps, and
source. Recipes come from a variety of sources such as blogs
and online publications. Anecdotally, certain sources are
associated with higher incidences of non-food or unappealing
food recipe images and often particular sources are associated
with both.

The aim of EDA was to ascertain if Wellio recipe source
could be a good proxy for recipe image relevance and appeal.
The ultimate goal is to use this proxy relationship to
automatically label recipe images on relevance and appeal
based on which recipe source they come from. The data
examined came from CrowdFlower (a data mining and
crowdsourcing platform) in which participants were asked to
score the relevance of search results given a particular query
and were asked the question “Does this recipe look appealing?”
given a recipe title and image.

In short, the EDA was inconclusive as to whether recipe
source is a good proxy for image relevance and appeal. More
data is needed — many of the sources from the CrowdFlower
data only have one recipe associated with them which is not
enough to make any inferences. Another factor is the role of
personal preference and taste when evaluating the appeal of
recipe images. Someone might rate a recipe image as
unappealing even though it may have elements of a more
objectively high-quality image simply because the person

Figure 1. Examples of Wellio recipe images

Non-food images

Unappealing food images

evaluating the image doesn't like a certain ingredient used in
the recipe. A related (but unvalidated) observation is it seems
as though "unhealthy" recipe images, for example, images of
burgers, pizza, etc., are more often rated as appealing as
opposed to images of vegetables and salads. There is also the
issue of foods that inherently don't photograph as well as others
(for example, soup).

Without quantitative proof, it’s intuitively obvious that
relevance and appealingess are related to some extent. For
example, images of food that are very visually unappealing are
often not even immediately recognizable as food. As such the
goal of the project was simplified to detecting whether an
image contains food or not, a binary image classification task.

III. DEEP LEARNING FOR IMAGE CLASSIFICATION
Before the widespread adoption of deep learning, image

classification was performed via hand-crafted extraction of
features in images (such as edges and corners). Algorithms like
Scale-Invariant Feature Transform (SIFT) [1], which is aptly
named, were used to extract features. These features were then
passed to a linear classifier, such as a Support Vector Machine
(SVM) to ultimately classify the image.

Modern day image classification generally involves the use
of a convolutional neural network (CNN). The basic premise
behind a CNN is that it takes an image and then through a
series of several layers and operations recognizes increasingly
complex features in the training data. The CNN then outputs
(in the case of binary classification) a single value between
zero and one. This value represents the probability associated
with the input being of a particular class. The novelty of a
CNN over hand-crafted feature extraction techniques is that
features extracted by a CNN are learned using the data rather
than manually constructed [1].

A. Convolutional Neural Networks
CNNs are made up of four main components: convolution,

non-linearity, pooling (subsampling or downsampling), and a
final fully connected layer (for classification). Backpropagation
is the crucial step that powers learning during the training
process.

In the convolutional layers, image features are extracted by
sliding filters (also known as feature detectors), often a 3 x 3 or
5 x 5 dimensional matrix, over the image (which is also a
matrix of pixel values). The dot product is then computed
between the filter and image to generate feature maps. The
filter size, as well as the number of filters to use, are hyper-
parameters under the user’s control. The image features are
learned hierarchically — lower convolutional layers learn
lower-level features such as corners and edges, middle layers
learn color and shape, and higher layers learn high-level
features representing the objects in the image (for example, in
the case of an image of a cat, higher layers learn what features
make up a cat ear) [2].

After each convolutional layer, a non-linearity is
introduced, an activation function which encodes when the
individual “neurons” (or nodes) in the network should “fire”
(or activate) given certain features. Generally, a Rectified
Linear Unit (ReLU) activation works well in CNNs [3]. ReLU
activation replaces all negative values in the feature map with

zeros. Since convolution is still a linear operation but image
data is non-linear, a non-linear activation function helps the
network to learn non-linear data [3].

Next is pooling, which similar to convolution, involves the
use of a two-dimensional matrix as a filter. These pooling
filters reduce each feature map’s dimensionality, while still
retaining the most important information. There are several
types of pooling, such as max, average, and sum. Max pooling,
in which the rectified feature map is reduced to the max values
ascertained from passing a m x n filter over the map, has been
shown to work quite well [4]. Pooling helps make feature
learning more manageable by reducing the number of
parameters (and reduces the number of computations) which
helps in over-fitting. Another benefit of pooling is it helps
make the network invariant to transformations and translations.
For image classification this is very beneficial since the same
type of object can appear at different scales and orientations.

The final layer in a CNN is a fully connected layer. High-
level features are extracted from the previous convolutional
and pooling layers and the function of the fully connected layer
is to use these feature maps to classify the images into various
classes. The term “fully connected” means every node in the
previous layer is connected to every node in the next layer [4].
This is good for classification as each high-level feature gets a
vote in the class prediction. Again, a non-linear activation is
applied to the final output. In the case of binary classification,
this activation is a sigmoid function [4], which squashes values
between zero and one. These then represent the probabilities of
belonging to a given class. A threshold is selected and
probabilities below the given threshold are assigned to the
negative class, probabilities above the given threshold are
assigned to the positive class.

During the forward pass of the network, the CNN takes an
image as input, goes through convolution, ReLU, pooling, and
then the final fully connected layer. Because the network is

Figure 2. The architecture of LeNet-5 demonstrates the different layers and
operations in a CNN [5]

Figure 3. Different activation functions — left: ReLU, right: Sigmoid [3]

initialized with random values, the final outputted probability
for each class is also random. To make improvements to this
prediction, the error is calculated using a loss function (such as
mean square error). Backpropagation then calculates the
gradient (that is the derivatives) of the loss function with
respect to all the network’s parameters (or filter values, also
known as weights) [6]. The weights are then updated via
gradient descent to minimize the error. An important hyper-
parameter is the learning rate, which specifies the step size to
take when performing gradient descent [6]. This whole process
is then performed across all images in the training set.

 (1)

B. Transfer Learning
Instead of training a CNN from scratch (which is difficult

for multiple reasons — it requires a very large dataset, compute
power, and time), it is much more common and efficient to use
a pre-trained CNN. A pre-trained CNN is generally a deep
network, comprised of many convolutional and pooling layers,
previously trained on a very large and varied set of images.
Such a large, varied dataset allows the pre-trained model to
make very good generalizations on universal features occurring
in images that can be repurposed for a variety of computer
vision tasks. There are two ways to approach transfer learning
— feature extraction and fine-tuning [7].

C. Feature Extraction
Feature extraction uses patterns learned by a previously

trained network to extract representative features from new
data. These features are then used to train a new classifier from
scratch. As discussed previously, the convolutional base (the
convolutional layers) in a CNN is essentially a feature
extractor. The base of a pre-trained model can therefore be
used to extract features from a new set of images, generating a
set of feature maps which, in conjunction with their associated
labels, are passed to a classifier to generate class predictions.

Generally, this approach is good for problems in which the
dataset is small and similar to the data the original pre-trained
network was trained on [7]. However, it can also be leveraged
for problems in which the data is small but dissimilar from the
original data. In this case, only the first few layers of the
convolutional base are used to generate feature maps, as these
lower layers detect very generic features universal to all images
[7]. While this approach of a convolutional base + classifier is
computationally fast to run (and can be performed on CPU), it
does not leverage data augmentation. Data augmentation is a
technique to artificially create additional training examples by
randomly transforming images (i.e. rotation, flips, etc.) and has
shown to be quite effective in reducing overfitting [8]. The
reason it can’t be applied in this approach is because the pre-
trained convolutional base isn’t learning new features from the
data, only generating feature maps based on what’s already
learned from the previous data it was trained on.

D. Fine-tuning
Fine-tuning is another approach to transfer learning. It

involves extending the convolutional base by adding additional
fully connected layers on top and training the whole network

end-to-end [7]. As such, it can make use of data augmentation.
However, this approach is much slower and computationally
expensive (and requires GPU). The term “fine-tuning” comes
from the unfreezing (which allows the weights to get updated
during training) of a few of the top layers in the convolutional
base. These convolutional layers are then trained along with the
newly added fully connected layers. There are two benefits to
this approach — it can leverage data augmentation and it can
learn more nuanced features relevant to the problem at hand
[7].

Fine-tuning works well on a dataset that is large and similar
to the original dataset — overfitting is less of an issue with
more data. Fine-tuning can also be leveraged when the dataset
is large but very different from the original dataset. It’s often
the case that it’s still advantageous to use a pre-trained network
with its initialized weights instead of starting from scratch [7].

IV. RELATED WORK
While CNNs have been around since the early 1990s, they

were still “in beta” so to speak. With the advent of more
computing power and data, CNNs were able to solve much
more challenging problems [1]. The past five years have seen a
boom in their usage in computer vision problems. Some
influential projects and architectures built upon in this paper
are discussed below.

A. ImageNet
ImageNet is a project that contains over 1.4 million labeled

images organized into ~22,000 categories [9]. These categories
encompass a multitude of objects such as different animals,
vehicles, household items, and even various kinds of foods.
The state-of-the-art pre-trained networks are trained on
ImageNet in response to the ImageNet Large Scale Visual
Recognition Challenge. The aim of this challenge is to
correctly classify an image into 1,000 separate classes and is
used as a benchmark for image classification problems.

B. VGG
Developed at the University of Oxford’s Visual Geometry

Group, the VGG architecture took 2nd place at the ImageNet
Challenge in 2014 in the classification task. Both VGG16 and
VGG19 refer to the number of weight layers in the network

Etotal = ∑
1
2

(a c t u a l − pr ed ic ted)2

Figure 4. The architecture of VGG16 [11]

and demonstrate that the number of layers in a network is
crucial for performance. While relatively straightforward in
terms of architecture, VGG is slow and quite large [10].

C. GoogLeNet
The GoogLeNet (since renamed Inception) architecture was

the ImageNet Challenge winner in 2014 and comes out of
research at Google. Its novelty is the Inception module, which
operates as a mini model instead a bigger model (very much
like the 2010 movie by the same name). These modules act like
multi-level feature extractors which perform convolutions in
parallel. This results in a faster and smaller model architecture
than VGG.

D. Food Image Detection and Recognition

Food image detection is binary classification, that is,
classifying a given image into food or non-food classes. Food
image recognition, on the other hand, is a multi-class
classification problem that seeks to recognize different food
item classes. These are both similar to other computer vision
tasks, and research into this area follows the current trend of
using CNNs, leveraging pre-trained models, and performing
fine-tuning to solve these types of tasks with rather successful
results [13], [14].

V. METHODOLOGY
The general approach in building a recipe image food

classification system was to first create a labeled dataset of
food images for the positive training examples and non-food
images for the negative training examples. While Wellio has a
large amount of recipe image data, it is unlabeled. Therefore,
ImageNet image data was used. Next two pre-trained models,
VGG16 and Inception V3 were explored to create feature
maps. These feature maps were then passed through various
model architectures to evaluate the classifier’s performance
using a variety of evaluation metrics.

A. Data & Preprocessing
The image data comes from sampling ImageNet images (as

well as providing some additional training data in the form of
food images from recipe sites and blogs). ImageNet images are
organized into various different synsets (synonym sets),
according to the WordNet (a lexical database) hierarchy. The
food image dataset was created by randomly sampling from ten
manually selected food related synsets. The non-food image
dataset was also created by randomly sampling from all synsets
(excluding the manually selected food related synsets

mentioned previously, plus some additional food related
synsets).

This resulted in:

2,400 training samples
• 1,200 food images
• 1,200 non-food images

800 validation samples
• 400 food images
• 400 non-food images

A limitation of both the training and validation data is that
the resulting data is noisy. The non-food image data contains
some food images. This is because randomly sampling all
synsets minus only some food related synsets, does not actually
remove all food related synsets. Similarly, the food image data
contains some images that are not quite of food per se. For
example, an image of a group of people sitting around a table
eating dinner or an image of a bag of Doritos. The food image
data also contains several low-quality food images, which
include food images with text overlay.

The hold out data is very small and consists of two
manually labeled datasets — one for non-food images and
another for visually unappealing food images from Wellio
recipe image data. The desire being that the model recognizes
neither hold out set as food images.

Some image preprocessing is necessary — namely
normalizing pixel intensity values by 255 (this keeps the
network’s weights from oscillating wildly during training) and
resizing all images to be the same height and width (which
allows convolution and pooling to be performed in a
reasonable manner). For this dataset, all images were resized to
be 150 x 150 pixels.

B. Technical Details
All experiments were run on Google Cloud Platform’s

Compute Engine using only CPU. The Keras API was chosen
as the deep learning framework for its python compatibility
and ease of use for fast experimentation. Keras also contains
several state-of-the-art pre-trained networks such as VGG16
and Inception V3 which were used for feature extraction. The
scikit-learn library was implemented to establish a baseline
model as well for its model evaluation metrics. And last but not
least, pandas, matplotlib, and seaborn were used for data
visualizations.

C. Feature Extraction
As mentioned previously, the general strategy for

leveraging transfer learning on small datasets that share
similarity to the original data the pre-trained network was
trained on, is to first generate feature maps using the pre-
trained convolutional base and separately run these feature
maps through a final classifier for predictions. Since the data
used in this project is both small and similar (or rather the exact
same) data used to train the selected pre-trained models
(VGG16 and Inception V3) this is the method that was
employed. To reiterate, the training and validation data both
come from ImageNet so a caveat here is that the feature maps
generated from VGG16 and Inception V3 may be more
resolved as these networks have learned the features in these

Figure 5. The architecture of Inception V3 [12]

images over many training epochs. Whether or not this leads to
some over-fitting is unclear. However, since this approach
removes the last fully connected layers in the pre-trained
networks used, nodes that detected features that are more high-
level and nuanced to the given classification task at hand — in
the case of VGG16 and Inception V3 classifying 1,000 classes,
are not present and therefore overfitting may not be
problematic after all.

The original VGG16 network was trained on 224 x 224
pixel input images and Inception V3 was trained on 299 x 299
pixel input images. Because the images in this project’s dataset
were resized to 150 x 150 pixels (to speed up feature map
generation), a new input dimension of 150 x 150 x 3 was
specified for both pre-trained models. For each image in the
dataset this resulted in the generation of 512 4 x 4 pixel and
2,048 3 x 3 pixel feature maps for VGG16 and Inception V3
respectively.

D. Baseline Models
A non-neural linear model was used as a “baseline” model

to ascertain the best final classifier to use in conjunction with
the feature maps. Scikit-learn’s stochastic gradient descent
(SGD) classifier was selected with hinge loss, returning an
SVM classifier which has been successfully used in past
computer vision problems.

E. Neural Network Architectures
In addition to the aforementioned more traditional machine

learning SGD classifier, several relatively simple multi-layer
perceptron (MLP) architectures were explored using the feature
maps generated by both VGG16 and Inception V3. Specific
hyper-parameters such as the number of hidden layers, hidden
units, as well as regularization (dropout) were manually tuned,
and the network was trained for 30 epochs.

VI. EXPERIMENTAL RESULTS

A. Model Comparison
Passing the feature maps and associated labels generated

via VGG16’s convolutional base through an SGD classifier
with log loss resulted in 77.4% accuracy on the validation set.
Using an SGD classifier with hinge loss resulted in 84.4%

accuracy on the validation set. The same strategy was
employed with feature maps generated via Inception V3’s
convolutional base. An SGD classifier with log loss resulted in
91.4% accuracy and using hinge loss resulted in 90.1%
accuracy on the validation set. These were already quite
favorable results.

Table 1 & 2. Hyper-parameter Exploration and Results

The results for the different MLP architectures are also
quite favorable. The VGG16 feature maps + MLP variants
achieved an average of 87% accuracy on the validation set. The
Inception V3 feature maps + MLP variants achieved an
average of 92% accuracy on the validation set. See Tables 1
and 2 for enumerated results for each pre-trained model feature
map and MLP variant.

Learning curves also serve as a nice way to compare model
performance. Note, the learning curves show that validation
accuracy is sometimes higher than training accuracy almost
immediately. This is because Keras has two modes: training
and validation. Regularization techniques, such as dropout are
not applied to the validation set. Also, the training accuracy is
an average of the accuracies over each batch of training data.
Since the networks change over time, the accuracy for the first
batches of an epoch is generally lower than over the last
batches. The validation accuracy for an epoch is calculated
using the network as it is at the end of the epoch, resulting in a
higher accuracy for that epoch.

B. Evaluation Metrics
To assess additional evaluation metrics, the model with the

best balance of validation accuracy and complexity was
selected for further analyses. For experiments using VGG16
feature maps, the model architecture of two layers with 64
hidden units and 25% dropout yields the model with the best

VGG16 feature maps + MLP classifier

Layers Hidden Units Dropout
Validation
Accuracy Delta

1 Dense 0 0 85.3% 0.13%

1 Dense + 1 Hidden 64 0 87.9% 0.86%

1 Dense + 1 Hidden 256 0.5 88.7% 0.75%

1 Dense + 2 Hidden 64, 64 0.25, 0.25 87.9% 0.54%

1 Dense + 2 Hidden 256, 64 0.25, 0.25 87.4% 0.97%

Inception V3 feature maps + MLP classifier

Layers Hidden Units Dropout
Validation
Accuracy Delta

1 Dense 0 0 91.7% 0.63%

1 Dense + 1 Hidden 64 0 92.5% 0.75%

1 Dense + 1 Hidden 256 0.5 92.9% 0.71%

1 Dense + 2 Hidden 64, 64 0.25, 0.25 92.5% 0.75%

1 Dense + 2 Hidden 256, 64 0.25, 0.25 92.2% 0.77%

Figure 6. Original recipe image (left), 25 randomly selected feature maps
generated by VGG16’s convolutional base (right)

balance of validation accuracy (88%) and complexity. For
experiments using Inception V3 feature maps, the model
architecture of one layer with 256 hidden units and 50%
dropout yields the model with the best balance of validation
accuracy (93%) and complexity.

Although there is no class imbalance, additional evaluation
metrics such as precision, recall, and f1-score are still of
interest. In this particular case, it may be beneficial to prioritize
precision over recall as it would likely yield the better user
experience to be very sure a recipe image is of food. Also, the
consequence of a false negative is rather trivial as it means the
recipe with a falsely labeled non-food image is simply demoted
in the search results. Prioritizing precision over recall also has
the added benefit of potentially weeding out unappealing food
images as well. Often unappealing food images aren’t even
immediately recognizable as food.

 Another valuable evaluation metric is a Receiver Operating
Characteristic (ROC) curve where the true positive rate is
plotted as a function of the false positive rate. An Area Under
the Curve (AUC) of up and to the left is good — as the
threshold decreases not many more false positives are being
accrued while the true positives increase (Figure 11). This
demonstrates the model is good a separating the food and non-
food images.

C. Qualitative Analysis
In addition to quantitative metrics, it is also useful to

analyze the results qualitatively by visually examining a
random sample of the images the models classified as food or

non-food images. See Figures 9–14 for examples of images the
models correctly labeled, incorrectly labeled, and images the
model was confused about.

VII. CONCLUSIONS & FUTURE WORK
All in all, the models performed decently well but not

without shortcomings — namely overfitting and noisy
data. Overfitting is quite high for some of the model
explorations which could be reduced if data augmentation was

Figure 8. Learning curves — VGG16 feature maps (top), Inception V3
(bottom)

Figure 7. Classification reports — VGG16 feature maps (right),
Inception V3 feature maps (left)

Figure 9. Non-food images the model correctly and very assuredly
classifies as not food (with a raw probability of 0)

 Classification using VGG16 feature maps

 Classification using Inception V3 feature maps

Figure 10. Food images the model correctly and very assuredly classifies as
food (with a raw probability of 1)

 Classification using VGG16 feature maps

 Classification using Inception V3 feature maps

employed. Leveraging data augmentation necessitates
extending the convolutional base and connecting it to a final
classifier and running the whole architecture end to end which
is very compute intensive and requires GPU. However, an
additional benefit of an end to end implementation is it allows
fine-tuning — training the top convolutional layers of the
models which would allow the models to learn more high-level
features specific to the dataset. Data augmentation, fine-tuning,
recollecting data to be less noisy, as well as adjusting the
learning rate, are techniques to explore in the future to enhance
the performance of these models.

Figure 12. Food images model incorrectly but still very assuredly classifies
as not food (with a raw probability near or at 0). Note several of the images
have people as the main focus.

 Classification using VGG16 feature maps

 Classification using Inception V3 feature maps

 Classification using VGG16 feature maps

 Classification using Inception V3 feature maps

Figure 14. Images the model is unsure about (as the raw probabilities are
near or at the 0.5 class boundary threshold).

 Classification using VGG16 feature maps

 Classification using Inception V3 feature maps

Figure 13. Non-food images the model incorrectly but still very assuredly
classifies as food (with a raw probability near or at 1). Note these images
are indeed labeled as not food, when they are in fact clearly food images.
This was a shortcoming of the data collection process, as some food
images were unavoidably randomly sampled from ImageNet to build the
not food training set. On the bright side, the model does actually correctly
label them as food images, although not “officially".

Figure 11. ROC curves

REFERENCES
[1] Nanni, Loris, Ghidoni, Stefano and Brahnam, Sheryl, “Handcrafted vs
Non-Handcrafted Features for computer vision classification,” Pattern
Recognition, 2017. DOI: 10.1016/j.patcog.2017.05.025

[2] CS231n: Convolutional Neural Networks for Visual Recognition, “Linear
classification: Support Vector Machine, Softmax,” 2017, [Online], Available:
http://cs231n.github.io/linear-classify, [Accessed: 14 - Oct - 2017].

[3] CS231n: Convolutional Neural Networks for Visual Recognition, “Neural
Networks Part 1: Setting up the Architecture,” 2017, [Online], Available:
http://cs231n.github.io/neural-networks-1, [Accessed: 14 - Oct - 2017].

[4] CS231n: Convolutional Neural Networks for Visual Recognition,
“Backpropagation, Intuitions,” 2017, [Online], Available: http://
cs231n.github.io/convolutional-networks, [Accessed: 14 - Oct - 2017].

[5] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning
applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov 1998. DOI: 10.1109/5.726791

[6] CS231n: Convolutional Neural Networks for Visual Recognition,
“Convolutional Neural Networks: Architectures, Convolution / Pooling
Layers,” 2017, [Online], Available: http://cs231n.github.io/optimization-2,
[Accessed: 14 - Oct - 2017].

[7] CS231n: Convolutional Neural Networks for Visual Recognition,
“Transfer Learning and Fine-tuning Convolutional Neural Networks,” 2017,
[Online], Available: http://cs231n.github.io/transfer-learning, [Accessed: 14 -
Oct - 2017].

[8] S. Wong, A. Gatt, V. Stamatescu and M. McDonnell, “Understanding
data augmentation for classification: when to warp?” Computer Science -
Computer Vision and Pattern Recognition, I.5.2, I.4.7, Sept 2016.

[9] ImageNet, 2016. [Online]. Available: http://www.image-net.org.
[Accessed: 14 - Oct - 2017].

[10] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition”, CoRR, abs/1409.1556, 2014.

[11] D. Frossard, “VGG in TensorFlow,” 2016. [Online]. Available: http://
https://www.cs.toronto.edu/~frossard/post/vgg16. [Accessed: 14 - Oct - 2017].

[12] J. Shlens, “Train your own image classifier with Inception in
TensorFlow,” 2016. [Online]. Available: https://research.googleblog.com/
2016/03/train-your-own-image-classifier-with. [Accessed: 14 - Oct - 2017].

[13] A. Singla, L. Yuan, and T. Ebrahimi, “Food/Non-food Image
Classification and Food Categorization using Pre-Trained GoogLeNet
Model,” In Proceedings of the 2nd International Workshop on Multimedia
Assisted Dietary Management, March 2016.

[14] L.Yang, C.Hsieh, H. Yang, N. Dell, S. Belongie, C. Cole, D. Estrin,
“Yum-me: A Personalized Nutrient-based Meal Recommender System,”
ARXIV, May 2016.

	Introduction
	Exploratory Data Analysis (EDA)
	Deep Learning For Image Classification
	Convolutional Neural Networks
	Transfer Learning
	Feature Extraction
	Fine-tuning
	Related Work
	ImageNet
	VGG
	GoogLeNet
	Food Image Detection and Recognition
	Methodology
	Data & Preprocessing
	Technical Details
	Feature Extraction
	Baseline Models
	Neural Network Architectures
	Experimental Results
	Model Comparison
	Evaluation Metrics
	Qualitative Analysis
	Conclusions & Future Work
	References

