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Abstract — This paper investigates the use of Generative 
Adversarial Networks (GANs) and Convolutional Neural Networks 
(CNNs) in the classification and generation of artistic images. The 
study begins with the development of a CNN model designed to 
distinguish between paintings by Paul Cezanne and Vincent van 
Gogh, utilizing a dataset of over 1,000 artworks. Through 
exploratory data analysis, baseline modeling, and iterative 
refinements, the CNN achieves an accuracy of 80% in this binary 
classification task. Following the classification, the focus shifts to 
generating new artwork using a GAN, aiming to produce images that 
emulate the styles of Cezanne and van Gogh. Initial attempts face 
challenges with noisy outputs, but the discussion includes the 
potential of advanced GAN architectures, such as Wasserstein GANs 
(WGANs), to enhance the quality of generated images. The findings 
highlight both the strengths and limitations of neural networks at the 
intersection of AI and art, suggesting future directions for improving 
generative models in creative applications. 

I. INTRODUCTION 
Generative Adversarial Networks (GANs) utilize both 

generative and discriminative models. Generative models 
describe the process by which data is generated, framed within 
a probabilistic model. Specifically, a generative model seeks to 
generate the distribution of P(x∣y), where x represents an 
observation in the dataset and y is a class label. In contrast, 
discriminative models focus solely on categorizing a given 
datapoint without concerning themselves with the data 
generation process. Discriminative models aim to find the 
distribution of P(y|x), which represents the probability of a 
class label y given some data x. Essentially, discriminative 
models define the decision boundary between classes, while 

generative models offer broader applications, such as imputing 
missing data or generating new data. 

In the context of a GAN, the generator employs a 
generative model, taking random input values and transforming 
these into images through a deconvolutional neural network. 
While the image generation aspect of a GAN is highly 
intriguing, the role of the discriminator, which utilizes a 
discriminative model, is equally essential. The discriminator 
functions as a binary classifier, determining whether an image 
produced by the generator resembles a real image from the 
original dataset or an artificially created one. This discriminator 
is typically implemented as a standard convolutional neural 
network (CNN). 

Throughout the GAN’s training process, the weights and 
biases in both the discriminator and generator are updated 
through backpropagation. This enables the discriminator to 
learn how to distinguish real images from those generated by 
the generator. Concurrently, the generator utilizes feedback 
from the discriminator to refine its output, producing 
increasingly convincing fake images that the discriminator 
eventually cannot differentiate from real ones. 

The initial focus of this research involved developing a 
comprehensive understanding of GAN architectures, with the 
ultimate goal of constructing a GAN capable of generating 
novel art from images of historical paintings. A foundational 
step in this process involved building a standard CNN to solve 
a binary classification problem: distinguishing between 
paintings created by Paul Cezanne and Vincent van Gogh. The 
underlying premise of a CNN is to process an input image 
through a series of layers that recognize increasingly complex 
features, ultimately outputting a single classification—whether 
the image is a Cezanne or van Gogh painting. This approach 
serves as a valid starting point, given its architectural similarity 
to the discriminator in a GAN, which also addresses a binary 
classification problem by distinguishing real from fake images. 
The initial steps in creating this binary classification CNN 
included conducting exploratory data analysis, establishing a 
non-neural network baseline model, prototyping a simple 
CNN, and ultimately building a more complex CNN capable of 
differentiating between Cezanne and van Gogh paintings. 

II. DATASET AND EXPLORATORY DATA ANALYSIS 
The dataset utilized in this project originates from the 

Kaggle competition “Painter by Numbers,” with the majority 
of images sourced from wikiart.org. The dataset consists of a 
total of 103,250 images, with 79,433 labeled as training data 
and 23,817 as testing data. The dataset encompasses 42 unique 

Figure 1. Examples of images in the “Painter by Numbers” dataset



genres, including portraits, landscapes, and abstract works. 
Additionally, 135 distinct painting styles are represented, 
ranging from Impressionism and Expressionism to Realism, 
among others. The dataset includes works from 2,074 different 
artists. 

For the purposes of this project, the focus was narrowed to 
the works of Paul Cezanne and Vincent van Gogh. The 
rationale behind this selection lies in the similarities these 
artists share in terms of color and content, despite differences 
in style. Both artists are recognized as Post-Impressionists, 
making them suitable subjects for this analysis. 

III. DATA PREPROCESSING 
The images in the Kaggle painting dataset exhibit 

significant variation in pixel size and aspect ratio, ranging from 
30,000 by 29,605 pixels on the larger end to 283 by 558 pixels 
on the smaller end. To make the image data suitable for 
machine learning applications, a script was developed to resize 
all images to a uniform square dimension of 72 by 72 pixels. 
While this resizing approach can cause distortions in non-
square images, it aligns with standard practices in similar 
computer vision tasks. Alternative methods, such as cropping, 
could potentially mitigate these distortions, though resizing 
remains a commonly employed solution. 

For the purposes of binary classification, the original 
dataset of 103,250 images was subsetted to include only the 
works of Paul Cezanne and Vincent van Gogh. Following the 
training and testing split provided by Kaggle, this subset 
resulted in 804 training images (412 Cezanne paintings and 
392 van Gogh paintings) and 189 testing images (87 Cezanne 
paintings and 102 van Gogh paintings). The differing number 
of images per artist introduces a class imbalance, which is 
minimal in the training set but more pronounced in the testing 
set. This issue is addressed in further detail in the modeling 
sections. 

Additional preprocessing steps involved normalizing pixel 
intensity values to a range of 0 to 255, achieved either through 
simple NumPy vectorized division or by utilizing the Keras 
ImageDataGenerator class. The ImageDataGenerator class was 
also employed to augment the painting images through random 
transformations, which typically enhance model generalization 
by introducing variations in orientation, rotation, and other 
aspects. However, the appropriateness of applying such 
transformations to this specific dataset warrants further 
investigation, as these alterations may affect the CNN’s ability 
to accurately discern the artist’s style. Specifically, the 
fill_mode argument in ImageDataGenerator, which determines 
how empty pixels caused by transformations are filled, can 
lead to a streaking effect in images when set to “nearest.” 
Using the “reflect” option is likely more suitable, as it avoids 
this streaking effect, which could be mistakenly interpreted as 
an artistic style by the CNN. 

IV. BASELINE “GENERATIVE” MODEL 
Given the project's objective to generate images, a baseline 

"generative" model was developed by averaging images to 
create composite representations of data subsets. The analysis 
revealed that averaging all images within a specific painting 
category or grouping typically results in a very fuzzy image. 
There is likely an optimal point at which averaging a certain 
number of similar images would yield a more refined result. 
Future experiments may explore the use of KMeans clustering 
to group similar images within higher-level categories, such as 
genre, to enhance this approach. Notably, averaging all portrait 
paintings reveals a discernible pattern, typically showing a 
central area where faces likely appear and a circular or oval 
frame common in certain art history periods, such as the Italian 
Renaissance. However, averaging landscape, Impressionism, 
Cezanne, and van Gogh paintings results in images that are 
considerably muddied. This outcome was anticipated, 
confirming that averaging images serves as a poor baseline 
"generative" model. 

For the baseline classification model, a Random Forest 
classifier was trained to distinguish between paintings by 
Cezanne and van Gogh. The default parameters of the scikit-
learn implementation were used, yielding a model with an 
accuracy of 0.65, which is above random guessing. However, 
given the class imbalance in the data, accuracy is not the most 
reliable evaluation metric, so the f1-score was also considered, 
which was similarly 0.65. 

An error analysis was conducted to examine which 
paintings were most easily classified, which were most 
frequently misclassified, and which caused the most confusion 
for the model. The Random Forest classifier exhibited a 

Figure 2. Distribution of the top 25 painting styles represented in the dataset

Figure 3. Example of the random transformations applied to dataset images 



tendency to over-predict Vincent van Gogh, despite the 
presence of slightly more Cezanne paintings (~20) in the 
training set. A preliminary examination suggests that the 
presence of blues and reds may cause the model to mistakenly 
classify a painting as a van Gogh. Feature importances returned 
by the Random Forest classifier initially appeared to be of 
interest, particularly in identifying significant pixel locations 
within the image. However, the importances are generally low, 
with approximately 10 locations emerging as slightly more 
important than others. These pixel locations are suspected to be 
near the center of the image. Upon further consideration, this 
interpretation reveals limitations, as focusing on precise pixel 
values may be too granular to generalize effectively across 
different images. 

V. CONVOLUTIONAL NEURAL NETWORK (CNN) 
MODELS 

A. Simple CNN 
A simple Convolutional Neural Network (CNN) was 

implemented and initially overfitted on a small subset of the 
data, consisting of three randomly selected paintings by 
Cezanne and van Gogh. This approach facilitated rapid 
prototyping of the CNN architecture within the dataset. The 
architecture of the simple CNN comprises a single 
convolutional layer with 32 filters, utilizing a Rectified Linear 
Unit (ReLU) as the activation function, followed by a max-
pooling layer, a flatten layer, and a final dense layer with a 
sigmoid activation function, appropriate for the binary 
classification task. The model was compiled using binary 
cross-entropy as the loss function and RMSprop as the gradient 
descent optimizer. The model's accuracy stabilized at 1.0 after 
approximately seven epochs. 

Subsequently, the model was trained using the entire 
dataset for 50 epochs, resulting in an accuracy of 0.70 and an 
f1-score of 0.68. This performance was only marginally better 
than that of the Random Forest classifier. To explore the impact 

of class imbalance on model performance, the larger class was 
randomly sampled to match the size of the smaller class. 
Training the simple CNN on this balanced dataset yielded an 
accuracy and f1-score of 0.71, demonstrating only a slight 
improvement over the imbalanced dataset. 

B. “Deeper” CNN 
Building upon the simple CNN architecture, additional 

layers were introduced to create a deeper model. Three more 
convolutional and max-pooling layers were added, initially 
maintaining 32 convolutional filters and then doubling the 
filter count for the subsequent two convolutional layers. ReLU 
activation continued to be used, and an additional flatten layer 
and a dense layer with 128 units (neurons) were incorporated. 
A dropout layer, set at 0.25, was also employed to mitigate 
potential overfitting by randomly deactivating neurons within a 
given layer. The final activation remained sigmoid, and the 
model was compiled with binary cross-entropy as the loss 

function. 

Although grid search was not performed, manual 
experimentation with various hyperparameters was conducted, 
including adjustments to the number of hidden layers and 
testing different activation functions, such as ELU and Hard 
Sigmoid. However, these changes did not yield significant 
improvements in accuracy or f1-score. Notably, using the 
Adam optimizer for gradient descent resulted in a higher f1-
score during experimentation. The diagram below provides an 
overview of the full architecture. 

The model was trained for 100 epochs on a Google Cloud 
instance equipped with 16 vCPUs, 104 GB of memory, and 2 
NVIDIA Tesla K80 GPUs, utilizing the image provided by 
Stanford's CS231n course. Extending the training beyond 100 
epochs did not yield any improvement in accuracy and even 
introduced the risk of overfitting. During the evaluation of the 
model's performance, an important detail in Keras was 
encountered when using the .flow_from_directory method on 
an ImageDataGenerator object—the class labels are mapped to 
indices in alphanumeric order. This initially led to an error in 
decoding the probabilities and class labels on the validation set, 
as van Gogh had been arbitrarily labeled as class 0 and 
Cezanne as class 1. Consequently, the evaluation metrics were 
inverted due to the switched class labels. After resolving this 
issue, the model achieved an accuracy of 0.80 with an f1-score 
of 0.76, representing an improvement over the previously 
mentioned simple CNN. 

Error analysis revealed no significant anomalies, though 
there were a few instances where the model confidently 
predicted a painting as Cezanne's work when it was actually by 
van Gogh. These instances highlighted the stylistic similarities 
between the two artists. Further validation of the model was 

Figure 5. Architecture of the deeper convolutional neural network (CNN) 
model for the classification task

Figure 4. Composite images generated by the baseline "generative" model, 
illustrating the resulting fuzziness and muddied patterns when averaging 
subsets of paintings



conducted using two additional unseen images that were not 
actual paintings by either artist but rather "fake" images 
generated by applying the artist's style to photos through neural 
style transfer. When testing a canonical but "fake" Cezanne 
image, the model accurately labeled it as Cezanne with a 
probability of 0.17, which is appropriate given that a more 
confident prediction would result in a probability closer to 
zero, as Cezanne is labeled as class 0. The model also correctly 
identified a canonical but "fake" van Gogh, though with a 
lower margin of confidence (a probability of 0.53), indicating 
that further improvement is needed for more accurate 
predictions. 

Considering the small dataset on which this model was 
trained, the overall performance is satisfactory. However, 
training on a larger set of paintings from each artist would 
likely enhance performance. An additional approach to 
consider is employing transfer learning, where a model is first 
trained on a broader subset of painting data, such as the top 
five genres or painting styles, and then the learned weights are 
leveraged to improve the binary classification of Cezanne and 
van Gogh. Another option for transfer learning could involve 
using larger pre-trained models, such as VGG-16 or Inception, 
although the effectiveness of these models with non-photo-
realistic images remains uncertain. 

VI. AN ATTEMPT AT A GENERATIVE 
ADVERSARIAL NETWORK (GAN) 

The final component of this project involved an attempt to 
build a Generative Adversarial Network (GAN) capable of 
producing images that closely resemble paintings from the 
Kaggle painting dataset. A "vanilla" GAN architecture was 
selected for experimentation, as opposed to more advanced 
GAN architectures such as AC-GAN, StackGAN, or WGAN. 

In this vanilla GAN, the discriminator consisted of four 
convolutional layers, each employing leaky ReLU activation 
and generous dropout. The use of leaky ReLU is intended to 
prevent the issue of "saturated gradients," a common problem 
in GAN architectures. Saturated gradients occur when 
gradients, representing changes in model weights, become 
excessively small or large during backpropagation, effectively 
causing neurons to cease learning. Leaky ReLU addresses the 
"dying ReLU" problem by allowing small negative values. 

Similar to the CNN used in the binary classification task, 
the discriminator in this GAN outputs a one-dimensional 
probability vector through a flatten layer and a dense layer with 
sigmoid activation. The generator, on the other hand, takes a 
uniformly distributed noise vector as input and generates fake 
images by essentially performing the inverse of convolution 
through several transposed convolutional (deconvolutional) 
layers. The generator also incorporates layers such as 
upsampling, which increases image dimensions, and batch 
normalization, which stabilizes learning by normalizing the 
activations of the previous layer. Like the discriminator, the 
generator also utilizes leaky ReLU and dropout, concluding 
with a flatten and dense layer with sigmoid activation. Both 
models were compiled using RMSprop as the optimizer and 
binary cross-entropy as the loss function. The generator and 
discriminator were then combined to create the GAN. 

While this GAN architecture produced reasonable results 
on the MNIST dataset within 1,000 training steps, it failed to 
deliver satisfactory results on the Kaggle painting dataset. The 
generated images still resembled noise rather than coherent 
paintings. It is hypothesized that this issue is related to the 
aforementioned problem of saturated gradients, as leaky ReLU 
may be inconsistent in resolving this issue. Further exploration 
is required to confirm this hypothesis. One promising 
alternative architecture is the Wasserstein GAN (WGAN), 
which incorporates the Wasserstein metric—a distance function 
between probability distributions. This metric is believed to 
enhance the stability of GANs. In summary, the vanilla GAN 
architecture did not achieve the desired results, and future work 

Figure 6. Receiver Operating Characteristic (ROC) curve illustrating the 
performance of the CNN model in distinguishing between Cezanne and van 
Gogh paintings

Figure 7. Comparison of original Claude Monet painting (left) and the 
corresponding GAN-generated Impressionistic version (right)



will involve investigating other GAN architectures, such as the 
WGAN, to improve image generation quality. 

VII. CONCLUSIONS & FUTURE WORK 
This research explored the application of Convolutional 

Neural Networks (CNNs) and Generative Adversarial 
Networks (GANs) in the realm of artistic image classification 
and generation. The study successfully demonstrated the ability 
of CNNs to distinguish between paintings by Paul Cezanne and 
Vincent van Gogh, achieving a classification accuracy of 80% 
and an f1-score of 0.76. This performance, though satisfactory, 
highlighted the potential for further improvement, particularly 
through the use of larger datasets and advanced techniques 
such as transfer learning. 

The experimentation with GANs, specifically a vanilla 
GAN architecture, revealed significant challenges in generating 
high-quality images from the Kaggle painting dataset. While 
the GAN produced reasonable results on simpler datasets such 
as MNIST, it struggled with the more complex and nuanced 
task of creating convincing artistic images. The primary issues 
identified include the problem of saturated gradients and the 
inconsistency of leaky ReLU in addressing these challenges. 
Despite these difficulties, the research underscores the potential 
of GANs in the field of generative art, pointing to the need for 
more robust and stable architectures. 

Future work will focus on addressing the limitations 
encountered in this study. First, the exploration of advanced 
GAN architectures, such as the Wasserstein GAN (WGAN), is 
essential to overcoming the stability issues observed in the 
vanilla GAN. Additionally, expanding the dataset to include a 
broader range of artists and styles could enhance the CNN’s 
ability to generalize across different artistic techniques. The 
incorporation of transfer learning, leveraging pre-trained 
models like VGG-16 or Inception, also holds promise for 
improving both classification and generative tasks. Further 
experimentation with hyperparameter tuning and different 
activation functions will be necessary to optimize model 
performance. 

In conclusion, while the current models have shown 
promising results, there remains substantial room for 
enhancement. The intersection of AI and art is a rapidly 
evolving field, and continued research in this area will 
undoubtedly contribute to more sophisticated and creative 
applications of neural networks in the future. 
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